In de abstracte algebra en de ringtheorie, deelgebieden van de wiskunde, is een euclidisch domein een ring die aan bepaalde voorwaarden voldoet. Het is een commutatieve ring waarin de geheeltallige deling is gedefinieerd.
Voor de getallen geldt de hoofdstelling van de rekenkunde, die zegt dat ieder getal als het product van priemgetallen kan worden geschreven. Met het algoritme van Euclides is de grootste gemene deler van twee getallen te bepalen en volgens de stelling van Bachet-Bézout is die grootste gemene deler een lineaire combinatie van de twee oorspronkelijke getallen. Deze eigenschappen gelden ook in een euclidisch domein. Ieder ideaal in een euclidisch domein is een hoofdideaal.
Het euclidische domein komt in de onderstaande hiërarchie voor: