Entropia swobodna – w termodynamice, potencjał w skali entropijnej, analogiczny do energii swobodnej. Znana także jako potencjał (funkcja) Massieu, Plancka lub Massieu-Plancka, lub (rzadziej) jako swobodna informacja. W mechanice statystycznej, swobodną entropię przedstawia się jako logarytm z sumy statystycznej. W matematyce jest uogólnieniem entropii zdefiniowanej przy użyciu prawdopodobieństwa swobodnego.
Entropia swobodna wynika z przekształcenia Legendre’a entropii. Poszczególne potencjały odpowiadają różnym ograniczeniom nałożonym na system. Najbardziej znanymi przykładami swobodnej entropii są:
Nazwa | Funkcja | Alt. fun. | Zmienne naturalne |
---|---|---|---|
Entropia | |||
Potencjał Massieu (entropia swobodna Helmholtza) |
|||
Potencjał Plancka (entropia swobodna Gibbsa) |
Należy zwrócić uwagę, że użycie pojedynczo nazwisk „Massieu” i „Planck” w odniesieniu do potencjału Massieu-Plancka tworzy pewną niejasność i dwuznaczność. W szczególności Potencjał Plancka ma alternatywne znaczenia. W większości standardowych notacji, potencjał entropijny oznaczony jest przez znak stosowany zarówno przez Plancka, jak i Schroedingera. (Gibbs używał dla oznaczenia energii swobodnej). Entropia swobodna została wprowadzona przez Massieu w 1869 roku, przed energią swobodną Gibbsa (1875).