Emmy Noether

Emmy Noether
Emmy Noether
Emmy Noether, ca. 1905
Teorema de Noether
Nascimento Amalie Emmy Noether
23 de março de 1882
Erlangen, Reino da Baviera, Alemanha
Morte 14 de abril de 1935 (53 anos)
Bryn Mawr, Pensilvânia, Estados Unidos
Sepultamento Old Library
Nacionalidade alemã
Cidadania Reino da Baviera
Etnia judeus
Progenitores
Irmão(ã)(s) Fritz Noether, Alfred Noether
Alma mater Universidade de Erlangen-Nuremberga
Ocupação matemática, física, professora universitária
Distinções Prêmio Memorial Ackermann-Teubner (1932)
Empregador(a) Universidade de Göttingen, Bryn Mawr College, Universidade de Erlangen-Nuremberga
Orientador(a)(es/s) Paul Gordan[1]
Orientado(a)(s) Max Deuring, Hans Fitting, Heinrich Grell, Grete Hermann, Zeng Jiongzhi, Jacob Levitzki, Hans Reichenbach, Otto Schilling, Ernst Witt
Instituições Universidade de Göttingen, Bryn Mawr College
Campo(s) matemática
Tese 1907: Über die Bildung des Formensystems der ternären biquadratischen Form
Obras destacadas teorema de Noether

Amalie Emmy Noether (pronunciado em alemão [ˈnøːtɐ]) (Erlangen, 23 de março de 1882Bryn Mawr, 14 de abril de 1935) foi uma matemática alemã, conhecida pelas suas contribuições de fundamental importância aos campos de física teórica e álgebra abstrata. Considerada por David Hilbert, Albert Einstein, Hermann Weyl e outros como a mulher mais importante na história da matemática,[2][3][4] ela revolucionou as teorias sobre anéis, corpos e álgebra. Em física, o teorema de Noether explica a conexão fundamental entre a simetria na física e as leis de conservação.[5][6][7]

Noether nasceu em uma família judia na cidade de Erlangen, na Francônia; seu pai era o matemático Max Noether. Ela planejou originalmente ensinar francês e inglês após passar nos exames exigidos, mas em vez disso estudou matemática na Universidade de Erlangen, onde seu pai lecionava. Após concluir seu doutorado em 1907, sob a supervisão de Paul Gordan, ela trabalhou no Instituto de Matemática de Erlangen sem remuneração por sete anos. Na época, as mulheres eram em grande parte excluídas dos cargos acadêmicos. Em 1915, ela foi convidada por David Hilbert e Felix Klein para ingressar no departamento de matemática da Universidade de Göttingen, um centro de pesquisa matemática de renome mundial. A faculdade de filosofia objetou, entretanto, e ela passou quatro anos lecionando sob o nome de Hilbert. Sua habilitação foi aprovada em 1919, permitindo-lhe obter o posto de Privatdozent.

Noether permaneceu um membro importante do departamento de matemática de Göttingen até 1933 - seus alunos às vezes eram chamados de "meninos Noether". Em 1924, o matemático holandês B. L. van der Waerden juntou-se a seu círculo e logo se tornou o principal expositor das ideias de Noether - seu trabalho foi a base para o segundo volume de seu influente livro de 1931, Moderne Algebra. Na época de seu discurso plenário no Congresso Internacional de Matemáticos de 1932 em Zurique, sua perspicácia algébrica foi reconhecida em todo o mundo. No ano seguinte, o governo nazista da Alemanha dispensou os judeus de cargos universitários e Noether mudou-se para os Estados Unidos para assumir um cargo no Bryn Mawr College, na Pensilvânia. Em 1935, ela foi submetida a uma cirurgia de cisto ovariano e, apesar dos sinais de recuperação, morreu quatro dias depois, aos 53 anos.

O trabalho matemático de Noether foi dividido em três "épocas".[8] Na primeira (1908-1919), ela fez contribuições para as teorias de invariantes algébricos e campos de números. Seu trabalho sobre invariantes diferenciais no cálculo de variações, o teorema de Noether, foi chamado de "um dos teoremas matemáticos mais importantes já comprovados na orientação do desenvolvimento da física moderna".[9] Na segunda época (1920–1926), ela começou um trabalho que "mudou a cara da álgebra [abstrata]".[10] Em seu artigo clássico de 1921 Idealtheorie in Ringbereichen (Teoria dos Ideais em Domínios de Anel), Noether desenvolveu a teoria dos ideais em anéis comutativos em uma ferramenta com aplicações abrangentes. Ela fez uso elegante da condição da cadeia ascendente, e os objetos que a satisfazem são nomeados Noetherian em sua homenagem. Na terceira época (1927–1935), publicou trabalhos sobre álgebras não comutativas e números hipercomplexos e uniu a teoria da representação de grupos à teoria dos módulos e ideais. Além de suas próprias publicações, Noether foi generosa com suas ideias e é creditada com várias linhas de pesquisa publicadas por outros matemáticos, mesmo em áreas muito distantes de seu trabalho principal, como a topologia algébrica.

  1. Emmy Noether (em inglês) no Mathematics Genealogy Project
  2. Einstein, Albert (1 de maio de 1935), «Professor Einstein Writes in Appreciation of a Fellow-Mathematician» (publicado em 5 de maio de 1935), New York Times, consultado em 13 de abril de 2008 . Online at the MacTutor History of Mathematics archive.
  3. Osen 1974, p. 141-152.
  4. Alexandrov, Pavel S. (1981), "In Memory of Emmy Noether", in Brewer, James W; Smith, Martha K, Emmy Noether: A Tribute to Her Life and Work, New York: Marcel Dekker, pp. 99–111, ISBN 0-8247-1550-0.
  5. Conover, Emily (13 de junho de 2018). «In her short life, mathematician Emmy Noether changed the face of physics». Science News (em inglês) 
  6. Ne'eman, Yuval. "The Impact of Emmy Noether's Theorems on XX1st Century Physics", Teicher 1999, p. 83–101.
  7. Conheça mulheres que se tornaram grandes cientistas - Emmy Noether (1882-1936) Portal BOL - acessado em 8 de março de 2015
  8. Weyl 1935
  9. Lederman & Hill 2004, p. 73.
  10. Dick 1981, p. 128

Emmy Noether

Dodaje.pl - Ogłoszenia lokalne