Teoria do caos

 Nota: Para outras definições de caos, veja Caos.
Os fractais são representantes matemáticos de padrões aparentemente complicados mas que podem ser gerados por leis de evolução simples, como previsto pela teoria do caos.

A teoria do caos é um campo de estudo em matemática, com aplicações em várias disciplinas, incluindo física, engenharia, economia, biologia e filosofia.[1] A teoria do caos trata de sistemas complexos e dinâmicos rigorosamente deterministas, mas que apresentam um fenômeno fundamental de instabilidade chamado sensibilidade às condições iniciais que, modulando uma propriedade suplementar de recorrência, torna-os não previsíveis na prática a longo prazo.

Pequenas diferenças nas condições iniciais, tais como as causadas por erros de arredondamento em computação numérica, produzem resultados amplamente divergentes para tais sistemas dinâmicos,[2] tornando a previsão a longo prazo impossível, em geral.[3] Isso acontece apesar de estes sistemas serem deterministas, o que significa que seu comportamento futuro é totalmente determinado por suas condições iniciais, sem elementos aleatórios envolvidos.[4] Em outras palavras, a natureza determinista desses sistemas não os torna previsíveis.[5][6] Este comportamento é conhecido como caos determinístico, ou simplesmente caos.

A alta sensibilidade às condições iniciais dá, ao sistema não linear, a característica de instabilidade, o que faz com que seja incorretamente confundido com um sistema aleatório. A formação de uma nuvem no céu, por exemplo, pode ser desencadeada e se desenvolver com base em centenas de fatores que podem ser o calor, a pressão, a evaporação da água, os ventos, o tempo e o clima, condições do Sol, os eventos sobre a superfície e inúmeros outros. Se as condições de todos estes fatores forem conhecidas com exatidão no momento presente, o exato formato de uma nuvem no futuro pode ser previsto com exatidão. Porém, como as condições atuais exatas não são conhecidas, o comportamento futuro também é difícil de prever.

Além disso, mesmo que o número de fatores influenciando um determinado resultado seja pequeno, ainda assim a ocorrência do resultado esperado pode ser instável, desde que o sistema seja não linear.

A consequência desta instabilidade dos resultados é que mesmo sistemas determinísticos (os quais têm resultados determinados por leis de evolução bem definidas) apresentam uma grande sensibilidade a perturbações (ruído) e erros, o que leva a resultados que são, na prática, imprevisíveis, embora não sejam aleatórios. Enquanto o comportamento futuro do sistema caótico pode ser determinado se as condições iniciais forem perfeitamente conhecidas, o mesmo não ocorre com um sistema aleatório. Mesmo em sistemas nos quais não há ruído, erros microscópicos na determinação do estado inicial e atual do sistema podem ser amplificados pela não linearidade ou pelo grande número de interações entre os componentes, levando a um comportamento futuro difícil de prever. É o que se chama de "Caos Determinístico"

A dificuldade de se conhecer o estado presente com exatidão leva à necessidade de modelar o sistema não linear como aleatório, em algumas situações, quando os detalhes do comportamento não são de interesse, embora ele seja, na realidade, determinístico. Ou seja, embora a descrição da mecânica clássica e relativística seja determinística, a complexidade da maioria dos sistemas leva a uma abordagem na qual a maioria dos graus de liberdade microscópicos é tratada como ruído (variáveis estocásticas, ou seja, que apresentam valores aleatórios) e apenas algumas variáveis são analisadas com uma lei de comportamento determinada, mais simples, sujeita à ação deste ruído. Este método foi utilizado por Einstein e Paul Langevin no início do século XX para compreender o movimento browniano.

Pois, é exatamente isso que os matemáticos querem prever: o que as pessoas pensam que é acaso mas, na realidade, é um fenômeno que pode ser representado por equações. Alguns pesquisadores já conseguiram chegar a algumas equações capazes de simular o resultado de sistemas como esses. Ainda assim, a maior parte desses cálculos prevê um mínimo de constância dentro do sistema, o que normalmente não ocorre na natureza.

Os cálculos envolvendo a teoria do caos são utilizados para descrever e entender fenômenos meteorológicos, crescimento de populações, variações no mercado financeiro e movimentos de placas tectônicas, entre outros. Uma das mais conhecidas bases da teoria é o chamado "efeito borboleta", teorizado pelo matemático Edward Lorenz, em 1963.

  1. * ALTA ANSIEDADE: A MATEMÁTICA DO CAOS
  2. Oliveira, Hércules A. (2014). «Transição de fase no sistema de Hénon-Heiles». Revista Brasileira de Ensino de Física (4). ISSN 1806-1117. doi:10.1590/S1806-11172014000400014. Consultado em 9 de abril de 2021 
  3. Stephen H. (1993). na vigília do Caos: Ordem Imprevisível em Sistemas Dinâmicos. University of Chicago Press. [S.l.: s.n.] p. 32. ISBN 0-226-42976-8 
  4. Kellert 1993, p. 56
  5. . Kellert 1993, p. 62
  6. Werndl, Charlotte (2009). 1/195 «Quais são as novas implicações do Caos para imprevisibilidade?» Verifique valor |url= (ajuda). O Jornal britânico para a Filosofia da Ciência. 60 1 ed. pp. 195–220. doi:10.1093/bjps/axn053 

Teoria do caos

Dodaje.pl - Ogłoszenia lokalne