All of the trigonometric functions of any angle can be constructed using a circle centered at O with radius of 1.
Trigonometric functions: Sine , Cosine , Tangent , Cosecant , Secant , Cotangent
In mathematics , the trigonometric functions are a set of functions which relate angles to the sides of a right triangle . There are many trigonometric functions, the 3 most common being sine, cosine, tangent , followed by cotangent , secant and cosecant .[ 1] [ 2] The last three are called reciprocal trigonometric functions, because they act as the reciprocals of other functions. Secant and cosecant are rarely used.
Function
Abbreviation
Relation (Radians)
Sine
sin
sin
θ
=
cos
(
π
2
−
θ
)
{\displaystyle \sin \theta =\cos \left({\frac {\pi }{2}}-\theta \right)\,}
Cosine
cos
cos
θ
=
sin
(
π
2
−
θ
)
{\displaystyle \cos \theta =\sin \left({\frac {\pi }{2}}-\theta \right)\,}
Tangent
tan (or tg)
tan
θ
=
sin
θ
cos
θ
=
cot
(
π
2
−
θ
)
=
1
cot
θ
{\displaystyle \tan \theta ={\frac {\sin \theta }{\cos \theta }}=\cot \left({\frac {\pi }{2}}-\theta \right)={\frac {1}{\cot \theta }}\,}
Cotangent
cot (or ctg)
cot
θ
=
cos
θ
sin
θ
=
tan
(
π
2
−
θ
)
=
1
tan
θ
{\displaystyle \cot \theta ={\frac {\cos \theta }{\sin \theta }}=\tan \left({\frac {\pi }{2}}-\theta \right)={\frac {1}{\tan \theta }}\,}
Secant
sec
sec
θ
=
1
cos
θ
=
csc
(
π
2
−
θ
)
{\displaystyle \sec \theta ={\frac {1}{\cos \theta }}=\csc \left({\frac {\pi }{2}}-\theta \right)\,}
Cosecant
csc (or cosec)
csc
θ
=
1
sin
θ
=
sec
(
π
2
−
θ
)
{\displaystyle \csc \theta ={\frac {1}{\sin \theta }}=\sec \left({\frac {\pi }{2}}-\theta \right)\,}
↑ "Comprehensive List of Algebra Symbols" . Math Vault . 2020-03-25. Retrieved 2020-08-29 .
↑ Weisstein, Eric W. "Trigonometric Functions" . mathworld.wolfram.com . Retrieved 2020-08-29 .