David Hilbert | |
---|---|
Sinh | Wehlau, Đông Phổ | 23 tháng 1, 1862
Mất | Göttingen, Đức | 14 tháng 2, 1943
Quốc tịch | Đức |
Trường lớp | Đại học Königsberg |
Nổi tiếng vì | Định lý cơ sở Hilbert Tiên đề Hilbert Bài toán Hilbert Phương trình Hilbert Einstein–Hilbert action Không gian Hilbert |
Sự nghiệp khoa học | |
Ngành | Toán học |
Người hướng dẫn luận án tiến sĩ | Ferdinand von Lindemann |
Các nghiên cứu sinh nổi tiếng | Wilhelm Ackermann Otto Blumenthal Werner Boy Richard Courant Haskell Curry Max Dehn Paul Funk Kurt Grelling Alfréd Haar Erich Hecke Earle Hedrick Ernst Hellinger Wallie Hurwitz Oliver Kellogg Hellmuth Kneser Robert König Emanuel Lasker Charles Max Mason Erhard Schmidt Andreas Speiser Hugo Steinhaus Gabriel Sudan Teiji Takagi Hermann Weyl Ernst Zermelo |
Ảnh hưởng bởi | Immanuel Kant[1] |
David Hilbert (23 tháng 1 năm 1862, Wehlau, Đông Phổ – 14 tháng 2 năm 1943, Göttingen, Đức) là một nhà toán học người Đức, được công nhận như là một trong những nhà toán học có ảnh hưởng rộng lớn nhất của thế kỉ 19 đầu thế kỉ 20. Ông thiết lập tên tuổi như là một nhà toán học và nhà khoa học vĩ đại bằng cách phát minh hay phát triển một loạt các ý tưởng khác nhau, chẳng hạn như là lý thuyết bất biến, tiên đề hóa hình học, và khái niệm không gian Hilbert,[2] một trong những nền tảng của giải tích hàm. Hilbert và các học sinh của ông đã xây dựng đủ hạ tầng cơ sở toán học cần thiết cho cơ học lượng tử và thuyết tương đối rộng. Ông là một trong những sáng lập viên của lý thuyết chứng minh, logic toán học và sự phân biệt giữa toán học và meta-toán học. Ông sử dụng và bảo vệ lý thuyết tập hợp của Cantor và các số siêu hạn (transfinite number). Một ví dụ nổi tiếng về vai trò lãnh đạo thế giới toán học là bài phát biểu năm 1900 về danh sách các bài toán quyết định hướng đi của nghiên cứu toán học trong thế kỉ thứ 20.