Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


1-forma

In algebra lineare, una 1-forma su uno spazio vettoriale è sinonimo di funzionale lineare su tale spazio. In tale contesto, la dicitura "1-forma" è solitamente utilizzata per distinguere i funzionali lineari da funzionali multilineari di grado maggiore (una forma multilineare di grado n è un'espressione polinomiale che è lineare rispetto a tutte le n variabili su cui è definita).

In geometria differenziale, una 1-forma differenziale su una varietà differenziabile è una sezione liscia del fibrato cotangente, lo spazio duale del fibrato tangente. In modo equivalente, una 1-forma su una varietà è una funzione liscia definita dallo spazio totale del fibrato tangente di a la cui restrizione ad ogni fibra è un funzionale lineare sullo spazio tangente. In simboli:

dove è lineare.

Spesso le 1-forme sono descritte localmente come combinazioni lineari dei differenziali delle coordinate:

dove sono funzioni lisce. Da questo punto di vista, una 1-forma obbedisce ad una legge di trasformazione covariante per cambiare sistema di coordinate. Si tratta quindi di un campo tensoriale covariante di ordine 1.


Previous Page Next Page