Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Kompakt-Offen-Topologie

Die Kompakt-Offene-Topologie, kurz KO-Topologie,[1] ist eine im mathematischen Teilgebiet der Topologie betrachtete Struktur auf Funktionenräumen stetiger Funktionen. Sind nämlich und topologische Räume, so sind die stetigen Abbildungen die strukturerhaltenden Abbildungen. Daher liegt es nahe, die Menge aller stetigen Funktionen wieder mit einer Topologie auszustatten. Unter den vielen Möglichkeiten, das zu tun, hat sich die Kompakt-Offen-Topologie als besonders geeignet herausgestellt.

Die Mathematiker R. H. Fox (1945) und Richard Friederich Arens (1946) definierten als erste diese Topologie und untersuchten sie systematisch.[2]

  1. Gerd Laures, Markus Szymik: Grundkurs Topologie. Spektrum – Akademischer Verlag, Heidelberg 2009, ISBN 978-3-8274-2040-4, S. 72.
  2. Boto von Querenburg: Mengentheoretische Topologie. 3., neu bearbeitete und erweiterte Auflage. Springer, Berlin u. a. 2001, ISBN 3-540-67790-9, S. 333.

Previous Page Next Page