Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Lebesgue-Integral

Abbildung 1: Illustration der Grenzwertbildung beim Riemann-Integral (blau) und beim Lebesgue-Integral (rot)

Das Lebesgue-Integral (nach Henri Léon Lebesgue [ɑ̃ʁiː leɔ̃ ləˈbɛg]) ist der Integralbegriff der modernen Mathematik, der die Integration von Funktionen ermöglicht, die auf beliebigen Maßräumen definiert sind. Im Fall der reellen Zahlen mit dem Lebesgue-Maß stellt das Lebesgue-Integral eine echte Verallgemeinerung des Riemann-Integrals dar.

Anschaulich gesprochen bedeutet dies: Zur Annäherung des Riemann-Integrals (Abb. 1 blau) wird die Abszissenachse in Intervalle unterteilt (Partitionen) und Rechtecke gemäß dem Funktionswert an einer Stützstelle innerhalb der betreffenden Intervalle konstruiert und diese Flächen addiert. Dagegen wird zur Annäherung des Lebesgue-Integrals (Abb. 1 rot) die Ordinatenachse in Intervalle unterteilt und die Flächen zur Approximation ergeben sich aus einer Stützstelle des jeweiligen Ordinatenintervalls multipliziert mit der Gesamtlänge der Vereinigung der Urbilder des Ordinatenintervalls (gleiche Rottöne). Die Summe der so gebildeten Flächen ergibt eine Approximation des Lebesgue-Integrals. Die Gesamtlänge der Urbild-Menge wird auch als ihr Maß bezeichnet. Man vergleiche dazu auch das Zitat von Henri Lebesgue im Abschnitt unten.

So wie ein Riemann-Integral durch die Konvergenz des Flächeninhaltes einer Folge von Treppenfunktionen definiert ist, so ist das Lebesgue-Integral durch die Konvergenz einer Folge von sog. einfachen Funktionen definiert.


Previous Page Next Page