Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Subgrup

En teoria de grups, donat un grup G sota una operació binària *, es diu que un subconjunt H de G és un subgrup de G si H amb l'operació * també forma un grup. Més precisament, H és un subgrup de G si la restricció de * a H x H és una operació de grup en H. De vegades, la relació «H és un subgrup de G» s'indica amb la notació HG.

Un subgrup propi d'un grup G és un subgrup H que és un subconjunt propi de G (és a dir HG). El subgrup trivial de qualsevol grup és el subgrup {e} que conté només l'element identitat.

Les mateixes definicions s'apliquen de forma més general quan G és un semigrup arbitrari, però aquest article només tractarà amb subgrups de grups. El grup G de vegades es denota pel parell ordenat (G,*), normalment per emfasitzar l'operació * quan G porta múltiples estructures algebraiques o d'altres tipus.

En el que segueix, es farà servir la convenció habitual d'ometre * i escriure el producte a* b simplement com ab.


Previous Page Next Page






زمرة جزئية Arabic Altqrup AZ Падгрупа BE Подгрупа Bulgarian Podgrupa Czech Undergruppe Danish Untergruppe German Subgroup English Subgrupo EO Subgrupo Spanish

Responsive image

Responsive image