En teoria de grups, donat un grup G sota una operació binària *, es diu que un subconjunt H de G és un subgrup de G si H amb l'operació * també forma un grup. Més precisament, H és un subgrup de G si la restricció de * a H x H és una operació de grup en H. De vegades, la relació «H és un subgrup de G» s'indica amb la notació H ≤ G.
Un subgrup propi d'un grup G és un subgrup H que és un subconjunt propi de G (és a dir H ≠ G). El subgrup trivial de qualsevol grup és el subgrup {e} que conté només l'element identitat.
Les mateixes definicions s'apliquen de forma més general quan G és un semigrup arbitrari, però aquest article només tractarà amb subgrups de grups. El grup G de vegades es denota pel parell ordenat (G,*), normalment per emfasitzar l'operació * quan G porta múltiples estructures algebraiques o d'altres tipus.
En el que segueix, es farà servir la convenció habitual d'ometre * i escriure el producte a* b simplement com ab.