Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Permutohedron

The permutohedron of order 4

In mathematics, the permutohedron (also spelled permutahedron) of order n is an (n − 1)-dimensional polytope embedded in an n-dimensional space. Its vertex coordinates (labels) are the permutations of the first n natural numbers. The edges identify the shortest possible paths (sets of transpositions) that connect two vertices (permutations). Two permutations connected by an edge differ in only two places (one transposition), and the numbers on these places are neighbors (differ in value by 1).

The image on the right shows the permutohedron of order 4, which is the truncated octahedron. Its vertices are the 24 permutations of (1, 2, 3, 4). Parallel edges have the same edge color. The 6 edge colors correspond to the 6 possible transpositions of 4 elements, i.e. they indicate in which two places the connected permutations differ. (E.g. red edges connect permutations that differ in the last two places.)


Previous Page Next Page






Permutaeder German Permuta hiperpluredro EO Permutoedru Romanian Перестановочный многогранник Russian

Responsive image

Responsive image