Selon Victor Hensen (1887), le plancton (du grec ancien πλανκτός / planktós, « errant, instable ») est un groupe polyphylétique d'organismes généralement unicellulaires vivant dans les eaux douces, saumâtres et salées, le plus souvent en suspension et apparemment passivement : gamètes, larves, animaux inaptes à lutter contre le courant (petits crustacés planctoniques, siphonophores et méduses), végétaux et algues microscopiques. Les organismes planctoniques sont donc définis à partir de leur niche écologique et non selon des critères phylogénétiques ou taxonomiques.
Le plancton est à la base de nombreux réseaux trophiques. Il constitue la principale nourriture des baleines à fanons et des coquillages filtreurs (dont moules, coques, huîtres, etc.), qu'il peut parfois intoxiquer par diverses toxines.
Bien que le phytoplancton représente moins de 1 % de la biomasse photosynthétique, il contribue pour environ 45 % de la production primaire sur la planète Terre, fixant la moitié du CO2 atmosphérique, et ayant fixé un tiers du carbone anthropique rejeté dans l'atmosphère dans le dernier siècle[1], mais il semble en diminution régulière depuis la fin du XXe siècle.
Les mouvements natatoires et déplacements verticaux de vastes populations de zooplancton[2] (migrations cycliquement liés à la lumière et aux saisons) contribuent au mélange des couches d'eau[3]. C'est un aspect de la bioturbation qui a été sous-estimé[4],[5]. L'observation du mélange d'eau par un banc de petites crevettes permet de visualiser les turbulences qu'elles induisent ; en présence de crevettes ces couches se mélangent environ 1 000 fois plus vite. De tels phénomènes existent également en eau douce (avec le mouvement des populations de daphnies par exemple).
La migration quotidienne du krill peut atteindre un kilomètre[6]. Sa capacité à mélanger la colonne d'eau et à transporter verticalement des calories, microbes, sels, nutriments et oxygène[7] et CO2 pourrait donc dépasser celle du vent, ce qui invite à mieux prendre en compte ce processus dans les modèles de circulation océanique. Ce type de phénomène a peut-être contribué à l'évolution du vivant[8] ; selon John Dabiri, « Il est maintenant clair que l'écologie animale doit être prise en compte dans les modèles de fonctionnement des océans modernes »[9].