Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Subgroup

In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G.

Formally, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is often denoted HG, read as "H is a subgroup of G".

The trivial subgroup of any group is the subgroup {e} consisting of just the identity element.[1]

A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, HG). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e}​).[2][3]

If H is a subgroup of G, then G is sometimes called an overgroup of H.

The same definitions apply more generally when G is an arbitrary semigroup, but this article will only deal with subgroups of groups.

  1. ^ Gallian 2013, p. 61.
  2. ^ Hungerford 1974, p. 32.
  3. ^ Artin 2011, p. 43.

Previous Page Next Page






زمرة جزئية Arabic Altqrup AZ Падгрупа BE Подгрупа Bulgarian Subgrup Catalan Podgrupa Czech Undergruppe Danish Untergruppe German Subgrupo EO Subgrupo Spanish

Responsive image

Responsive image